L29 meets
$$C_{X^n}$$
 at a single point
 $\rightarrow L_{Z^2} C_{X^n} = \omega^{2h} C_{X^n} L_{Z^2}$
We then obtain as final state:
 $|\gamma_{fin}\rangle = L_{Z^2} |\gamma_{ini}\rangle = L_{Z^2} (C_{X^n} C_{Z^2})|_{Z^2})$
 $= \omega^{2h} C_{X^n} C_{Z^2} L_{Z^2} |_{Z^2}$
 $= 12\rangle$ as L_{Z^2} is
 $= \omega^{2h} |\gamma_{ini}\rangle$
 $\rightarrow we obtain as monodromy:$
 $M = \omega^{2h}$, $\omega = e^{2\pi i/d}$
 $(R)^2$ where R is the exchange
operator of two anyons
 $\Rightarrow R = e^{\pi i \frac{2h}{d}}$
Result is independent of shape of
 L_{Z^2} loop as long as it circulates
 m^h -anyon exactly once l.

Example I: The non-Abelian
$$D(S_3)$$
 model
We take G to be simplest non-Abelian
finite group: G = S₃
 $S_3 = \{e, c, c^2, t, tc, tc^3\}$
identity cyclic perm. exchange of (1,2)
we have: $t^2 = c^3 = e$, $tc = c^2t$
 $\rightarrow |S_3| = 6$
Pick oriented two-dimensional
square lattice \rightarrow assign 6-level spin
spanned by states (3)
to each edge
Define operators acting on vertex ν by:
 $A_q(\nu) = \frac{1}{2t_1}, \frac{1}{2t_2}, \frac{1}{2}, \frac{9}{2t_1}, \frac{1}{9t_2}, \frac{1}{19t_2}, \frac{1}{19$

Creation operators:

$$W_{\Lambda}(s) = |e\rangle \langle e| + |c\rangle \langle c| + |c^{2}\rangle \langle c^{2}| - |t\rangle \langle t|$$

 $-|tc\rangle \langle tc| - |tc^{2}\rangle \langle tc^{2}|$
 $W_{\Phi}(s) = 2|e\rangle \langle e| - |c\rangle \langle c| - |c^{2}\rangle \langle c^{2}|$
 $\rightarrow can be checked by applying$
 P_{Λ} and P_{Φ}

Fusion rules:

$$A \times A=1, \quad A \times \hat{\Phi} = \hat{\Phi}, \quad \hat{\Phi} \times \hat{\Phi} = 1 + A + \hat{\Phi}$$

$$\longrightarrow \hat{\Phi} \quad is \quad non-Abelian \quad an you!$$

$$(\text{ there are more anyons in } D(S_3), \\ \text{but we focus here on closed} \\ \text{sub-algebra } 1, A, \hat{\Phi})$$

$$Verification: \\ \cdot W_{A}(s) W_{A}(s) = W_{A}(s) \\ \cdot W_{A}(s) = 4|e\rangle \langle e| + |e\rangle \langle e| + |e^{2}\rangle \langle e^{2}| \\ = W_{A}(s) + W_{A}(s) + W_{A}(s)$$

Non-Abelian information encoding
and manipulation
The D(Sz) model offers simple subset
of particles, I, Λ, Φ, satisfying

$$\Lambda \times \Lambda = I$$
, $\Lambda \times \Phi = \Phi$, $\Phi \times \Phi = I + \Lambda + \Phi$
 \rightarrow employ last fusion rule to encode
qubit states in fusion outcomes I and Λ
To encod a qubit, consider 4 neighbouring
vertices:
 $\frac{1}{4}$ $\frac{1}{4$

 $|1_{L}\rangle = W_{\Lambda}(4) W_{\Phi}(1) W_{\Phi}(3) |\bar{z}\rangle$

Properties:
) Both logical states are composed
of 4
$$\phi$$
 anyon states, but with
different pairwise fusion channels !
2) possible to move encooling Φ anyons
apart without destroying fusion outcome
 \rightarrow encoded information is topologically
protected from local perturbations/errors
To position anyons further apart, separated
by a chain of spins C, use:
 $W_{\Lambda}(C) = \prod_{x=\alpha/2} \sum_{g_{x}=x=g_{x}=e^{x}} (\omega^{x} + \omega^{x}) g_{y} \cdots g_{y} g_{y} \cdots g_{y}$
where g_{1}, \dots, g_{n} are states of spins
within the chain C, $c \in S_{3}$, $\omega = e^{2\pi i S_{3}}$
 \rightarrow for n=1 one recovers definition (x)
 \rightarrow by employing 4n anyons of type ϕ ,
we can encode n qubits !

$$\frac{\log (cal operators)}{a}$$
• a logical X operation corresponds to
creating two A charger and fusing
both with a ϕ from each pair:
 $X = W_A(C)$, $\int C$
• logical Z operation corresponds to
vertex operators aeting on both ϕ charges
of either pair:
 $Z = A_t(Y_1) A_t(Y_2)$

$$\frac{K(taev's Honeycomb model}{Consider the following two-body}$$
neavest neighbor model:
 $H = -\int_X \sum_{(ij)\in E_x} X_i X_j - \int_Y \sum_{(ij)\in E_y} Y_i Y_j - \int_Z \sum_{(ij)\in E_x} Z_i Z_j$
 $f = \frac{J_x J_y \ll J_z}{(ij)\in E_x}$ Heff $= -\frac{J_x J_y}{I_0} \sum_{j=1}^{X_j} X_j Y_{cj} Y_{cj$

