Second look at braiding:

We cannot directly exchange the e^{g} and m^{h} anyous, but we can compute the "monodromy" of taking one around the other!
\rightarrow Consider the initial state

$$
\left|\psi_{i n i}\right\rangle=C_{x^{n}} C_{z^{g}} \mid
$$

Pauli operators
\rightarrow move eg around m^{n} along green path by successive applications of Z^{g}-rotations
\rightarrow loop operator $L z g$
$L_{z} g$ meets $C_{x^{n}}$ at a single point

$$
\rightarrow L_{z} g C_{x^{n}}=w^{g h} C_{x^{n}} L_{z} g
$$

We then obtain as final state:

$$
\begin{aligned}
\left|\psi_{\text {fin }}\right\rangle & \left.=L_{z^{g}}\left|\psi_{\text {init }}\right\rangle=L_{z^{g}}\left(C_{x^{h}} C_{z^{g}}\right)|\xi\rangle\right) \\
& =\omega^{g h} C_{x^{h}} C_{z g} \underbrace{L^{g}|\xi\rangle}_{z^{g}} \\
& =|\xi\rangle \text { as } L_{z^{g}} \text { is } \\
& =\omega^{g h}\left|\psi_{\text {init }}\right\rangle
\end{aligned}
$$

\rightarrow we obtain as monodromy:

$$
M=\omega^{g h}, \omega=e^{2 \pi i / d}
$$

$(R)^{\prime \prime}$ where R is the exchange operator of two anyous

$$
\Rightarrow R=e^{\pi i \frac{q h}{d}}
$$

Result is independent of shape of $L_{z g}$ loop as long as it circulates m^{h}-anyon exactly once!

Example II: The non-Abelian $D\left(s_{3}\right)$ model
We take G to be simplest non-Abelian finite group: $G=S_{3}$

$$
S_{3}=\left\{e, c, c^{2}, t, t c, t c^{2}\right\}
$$

identity cyclic perm.
we have: $t^{2}=c^{3}=e, \quad t c=c^{2} t$

$$
\rightarrow\left|S_{3}\right|=6
$$

Pick oriented two-dimensional square lattice \longrightarrow assign 6-level spin spanned by states $|g\rangle$ to each edge
Define operators acting on vertex 2 by:

$$
\begin{aligned}
& A_{g}(2)=L_{+, 1}^{g} L_{+, 2}^{g} L_{-, 3}^{g} L_{-, 41}^{g} \quad \text { for } g \in S_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \longrightarrow \text { satisfy }\left[A_{g}(\nu), A_{g^{\prime}}\left(\nu^{\prime}\right)\right]=0 \forall \quad, \nu^{\prime}, g_{1} g^{\prime}
\end{aligned}
$$

Creation operators:

$$
\begin{align*}
W_{\Lambda}(s)= & |e\rangle\langle e|+|c\rangle\langle c|+\left|c^{2}\right\rangle\left\langle c^{2}\right|-|t\rangle\langle t| \\
& -|t c\rangle\langle t c|-\left|t c^{2}\right\rangle\left\langle t c^{2}\right| \tag{*}\\
W_{\phi}(s) & =2|e\rangle\langle e|-|c\rangle\langle c|-\left|c^{2}\right\rangle\left\langle c^{2}\right|
\end{align*}
$$

\rightarrow can be checked by applying P_{Λ} and P_{ϕ}

Fusion rules:

$$
\Lambda \times \Lambda=1, \quad \Lambda \times \Phi=\Phi, \quad \Phi \times \Phi=1+\lambda+\Phi
$$

$\longrightarrow \Phi$ is non- Abelian an you!
(there are more anyous in $D\left(s_{3}\right)$, but we focus here on closed sub-algebra $1, \wedge, \Phi)$
Verification:

$$
\begin{aligned}
& \text { - } W_{\Lambda}(s) W_{\phi}(s)=W_{\phi}(s) \\
& \text { - } W_{\phi}(s) W_{\phi}(s)=4|e\rangle\langle e|+|c\rangle\langle c|+\left|c^{2}\right\rangle\left\langle c^{2}\right| \\
& =W_{1}(s)+W_{\Lambda}(s)+W_{\phi}(s)
\end{aligned}
$$

Non-Abelian information encoding and manipulation
The $D\left(S_{3}\right)$ model offers simple subset of particles, $1, \Lambda, \Phi$, satisfying

$$
\Lambda \times \Lambda=1, \quad \Lambda \times \Phi=\Phi, \quad \Phi \times \Phi=1+\Lambda+\Phi
$$

\rightarrow employ last fusion rule to encode quit states in fusion outcomes 1 and λ
To encod a quit, consider 4 neighbouring vertices:

vacuum $|\xi\rangle$

$$
\begin{array}{ccc}
W_{\phi}(1) W_{\phi}(2)|\xi\rangle & W_{\Lambda}(4) W_{\phi}(1) & W_{\phi}(3)|\xi\rangle \\
\uparrow & \uparrow \\
\text { carry vacuum } & \text { carry }
\end{array}
$$

fusion ch.
\rightarrow define logical quits:

$$
\begin{aligned}
& \left|O_{L}\right\rangle=W_{\phi}(1) W_{\phi}(3)|\xi\rangle \\
& \left|\left.\right|_{L}\right\rangle=W_{\Lambda}(4) W_{\phi}(1) W_{\phi}(3)|\xi\rangle
\end{aligned}
$$

Properties:

1) Both logical states are composed of 4 canyon states, but with different pairwise fusion channels!
2) possible to move encoding Φ anyous apart without destroying fusion outcome
\rightarrow encoded information is topologically protected from local perturbations/errors
To position anyous fur the apart, separated by a chain of spins C, use:

$$
\begin{aligned}
& W_{\Lambda}(C)=\prod_{s \in C} W_{\Lambda}(s) \\
& W_{\phi}(c)=\sum_{k=q^{1,2}} \sum_{g_{n} \times \cdots \times g_{1}=c^{k}}\left(w^{k}+w^{-k}\right)\left|g_{1}, \ldots, g_{n}\right\rangle\left\langle g_{1}, \cdots, g_{n}\right|
\end{aligned}
$$

where g_{1}, \ldots, g_{n} are states of spins within the chain $C, c \in S_{3}, \omega=e^{2 \pi i / 3}$.
\rightarrow for $n=1$ one recovers definition ($*$)
\rightarrow by employing $4 n$ anyous of type ϕ, we can encode n quits!

Logical operators:

- a logical X operation corresponds to creating two Λ charger and fusing both with a ϕ from each pair:

$$
X=W_{\Lambda}(c), \quad \int_{\Phi}^{\Phi} c
$$

- logical Z operation corresponds to vertex operators acting on both ϕ charges of either pair:

$$
Z=A_{t}\left(v_{1}\right) A_{t}\left(v_{2}\right)
$$

Kitaer's Honeycomb model
Consider the following two-body nearest neighbor model:

$$
H=-\gamma_{x} \sum_{(i, j) \in E_{x}} x_{i} X_{j}-J_{y} \sum_{(i, j) \in E_{y}} Y_{i} Y_{j}-\gamma_{z} \sum_{(i, j) \in E_{z}} z_{i} z_{j}
$$

$$
\xrightarrow{\tilde{f}_{x}, y_{y} \ll j_{z}}
$$

$$
\begin{aligned}
H_{e f f}= & -\frac{y_{x}^{2} y_{y}^{2}}{16\left|J_{z}\right|^{3}} \sum_{f} \widetilde{x}_{e_{1}} \widetilde{x}_{e_{2} f} \widetilde{y}_{e_{3}} \widetilde{Y}_{e f} \\
& -J_{z} \sum_{e \in E_{z}} \widetilde{Z}_{e}
\end{aligned}
$$

where $\widetilde{A}_{e}=A_{i} A_{j}$ with $e=(i, j), A=X, Y, z$
Let us define quit $\{|\overline{0}\rangle=|00\rangle,|\bar{i}\rangle=|11\rangle\}$ for each vertical edge, stabilized in $J_{z} \gg 0$ limit, and Pauli operators $\bar{X}=X X$ and $\bar{z}=Z \otimes I$
\rightarrow effective lattice

Hamiltonian can be reformulated as

$$
\bar{H}_{e f f}=-\frac{\gamma_{x}^{2} y_{y}^{2}}{16\left|y_{z}\right|^{3}} \sum_{f} \bar{X}_{e l}^{f} \bar{X}_{e f}^{f} \bar{z}_{e_{t} f} \bar{z}_{e_{b} f}
$$

\rightarrow Hadamard transformation on all horizontal edges gives Kitaev's toric code Hamiltonian!

